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Réseau MLP : Une architecture passe-partout

Un réseau MLP est une succession de couches linéaires et de fonctions d’activation
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Propriétés du Multi-Layer Perceptron (MLP)
@ Idéal pour les taches simples (régression, classification, multi-classes ...)
@ Architecture que ’on retrouve quasiment dans toutes les autres architectures
@ Mais non adaptée sur des entrées complexes (texte, image)
@ Tres sujet au sur-apprentissage avec I’augmentation du nombre de couches

= La généricité de I'architecture : une histoire de cofit !
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Régression : colit MSE
Activation Autres couches Activation
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Cotlit Moindres Carrés
@ Usuel dans le contexte de la régression
o Adapté également aux sorties multi-variées

e Attention : choisir une activation de sortie adaptée !

si normalisation entre 0 et 1 — sigmoide
si normalisation entre -1 et 1 — tangente hyperbolique
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Classification binaire (1) : cotit MSE
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La MSE fonctionne également !
@ Codage soit {0,1} des classes, soit {—1,1}

@ Seuil & 0.5 pour départager entre les deux classes (ou autre pour régler le compromis
rappel/précision)

@ Mais pas idéal, le cout n’est pas assez "piqué” vers les extrémes

MIND - 0 2025-2026

571



Classification binaire (2)

B Activation
couche’
N
W)
()
o ‘\4 /J
~ I
/
) _ :!::
_/ ~ - -
M) :> S 7 =
N _/ -
s I
= /
{
N N
U /J
r/ﬁ\
W)

Binary Cross Entropy
@ Codage soit {0,1} des classes

@ Sigmoide comme derni¢re couche d’activation (la sortie représente la probabilité de la

classe 1)

@ Seuil & 0.5 pour départager entre les deux classes (ou autre pour régler le compromis

rappel/précision)

@ Encourage les valeurs extrémes 0 et 1.

coiut BCE

\
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ylog(y) + (1 — y)log(1 — )

Colt BCE :
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Classification binaire (2) : cott BCE
Activation Autres couches Activation
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Binary Cross Quoi ?

@ Hypotheése : distribution binomiale sur la sortie :

@ Soit § = fp(x) la sortie du réseau, qui modélise p(y = 1|x) = £*(x)
= P(ylx) = F (7 (1 - £ (x)1
("]

Neg-Log-vraisemblance :
NLL((x,y); 0) = —ylog(fg(x)) — (1 — y)(1 — fp(x)) = —ylog(y) — (1 — y)log(y)

@ Equivalent Cross-Entropie : H(p,q) = — Zyey p(y)log(q(y)), avec p la distribution des
?vrais” labels et q la distribution des labels prédits

v
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Multi-classe
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Quand il faut prédire K classes
o K sorties

e Utilisation de vecteurs 1-hot pour la supervision:
y =(0,0,...,1,...,0)

avec y; = 0 pour i différent de la bonne classe,
vk = 1 pour k I'indice de la bonne classe.
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Utilisation de la MSE
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Fonction de colit problématique

@ Sortie du réseau entre 0 et 1 = utilisation d’une sigmoide

o Mais :
La similarité au vecteur de sortie n’est pas le plus important, c’est
I’argmax qui nous intéresse le plus

Pas plus d’efforts mis sur la maximisation de la sortie de la bonne classe
que la minimisation des autres sorties

chwander (M r 2025-2026
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Cotit Cross-entropique

SoftMax : Transformer les sorties en distribution

K
SoftMax(z); = e/ E e“ |, 3 SoftMax(z); = 1
i=1

Cott Cross-entropique Multi-Classe
~ K N
° CE(y,¥) = — >iZ vilog(31)
@ Dans le cas ol y est un vecteur one-hot de la classe k : CE(y,y) = — log(yx)
@ Identique a la log-vraisemblance et une hypothése multinomiale sur les sorties

@ Combinaison SoftMax et Cross-entropie :

K
CE(y, SoftMax(z)) = —zx + log <32:1 er) R %ZMM(Z))‘ = Softmax(z); — 1i—k

Cross-entropie binaire

Pour le multi-class multi-label en particulier, cross-entropie sur chaque sortie de maniére

K
indépendante: BCE(y,§) = — >_ yilog(3i) + (1 — yi)log(1 — §i)
i=1
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Classification multi-classes : cotit Cross Entropy
Activation Autres couches Activation
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Probleme a K classes

o K sorties, chacune représente la probabilité de la classe correspondante
@ Softmax sur les sorties pour obtenir une distribution de probabilité

o La classe prédite correspond a l'index de la sortie la plus grande

e Coiit Cross Entropy (équivalent log-vraisemblance) pour ’apprentissage

e Si multi-labels, alors utilisation de la BCE sur chaque sortie (hypothése
de sorties indépendantes les unes des autres)

O. Schwander (Master MIND - Sorbonng
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En résumé

La fonction de cotit

o Essentielle au bon apprentissage, énormément de variantes

e TAche-dépendante, données-dépendante, tres flexible (pondération des
classes par exemple pour les données déséquilibrées)

nn.

nn.

nn.

Liloss

MSELoss

CrossEntropyLoss

CTCLoss

NLLLoss

PoissonNLLLoss

error (MAE) between each element in the input Z and
target y.

Creates a criterion that measures the mean squared
error (squared L2 norm) between each element in the
input Z and target y.

This criterion computes the cross entropy loss
between input logits and target.

The Connectionist Temporal Classification loss.

The negative log likelihood loss.

Negative log likelihood loss with Poisson distribution of
target.

r MIND

nn.GaussianNLLLoss

nn.KLDivLoss

nn.BCELoss

nn.BCEWithLogitsLoss

nn.MarginRankingloss

nn.HingeEmbeddingloss

Gaussian negative log likelihood loss.

The Kullback-Leibler divergence loss.

Creates a criterion that measures the Binary Cross
Entropy between the target and the input probabilities

This loss combines a Sigmoid layer and the BCELoss in
one single class.

Creates a criterion that measures the loss given inputs
1, 22, two 1D mini-batch or 0D Tensors, and a label
1D mini-batch or OD Tensor y (containing 1 or -1).

Measures the loss given an input tensor 2 and a labels
tensor y (containing 1 or -1).

nn

nn

nn

nn

-MultilabelMarginLoss

.HuberLoss

.SmoothL1Loss

-SoftMarginLoss

-MultilabelSoftMarginLoss
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Exemple : Echequier
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Quand on n’a pas de features ...

™ People,
clothes

Housing

Il faut pouvoir projeter des objets discrets dans un espace continu
@ Projection aléatoire : a existé (feature hashing), peu efficace
@ Pas de description des objets, mais il existe des relations entre eux !

@ Un ”bon” espace de représentation doit pouvoir exprimer la sémantique latente
de ces relations

@ Peut étre guidé par expert (avant le Deep), la tAche (apprentissage
end-to-end) ou par les données sans supervision (self-supervised par exemple)
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Exemple (1) : Auto-encoders

Apprentissage non-supervisé
Objectif :
e apprendre une “compression” des
données utile pour 'apprentissage
o f~1(f(x)) ~ x : la sortie doit étre
proche de I’entrée

Layer 4 Decoder
Layer 3 Decoder
Layer 2 Encoder
Layer 1 Encoder

Intéréts :
o Représentation plus adéquate
o clustering des données
o lissage/débruitage

@ visualisation

o ..
<
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Exemple (2) : Représentation et recommandation

Coat Données
MSE

@ Des produits (sans description)

r . . .
Activation @ @ Des utilisateurs (sans description)
ﬁ @ Des notes des utilisateurs sur les
Couche Linéaire ] produits
MLP 4 ﬁ Objectif : prédire les avis des utilisateurs
Activation
% Procédure :
[ Couche Linéaire ]
“ -

@ Encodage one-hot des produits et des
Espace utilisateurs (un produit et un
Utilisateur Latent produit utilisateur par dimensjon)

@ Représentation aléatoire initialement

[ofola]ofofo]] [o[1]ofofofe]] =~ . .
Encodage 1-hot a back-propagation corrige le MLP et
des utilisateurs des produits les représentations utilisateurs/ produitsJ

er MIND - Sorbonne 2025-2026 16 /1



Exemple (3) : le texte

‘AUJourd hui ||I |pleut| et| je ‘ n '
°
T
O
.’1344|£$5 ‘
‘ Couche d'embedding ‘

Méme objectif :

e Trouver une représentation 7utile” pour les éléments atomiques (token)
e Probleme de la tokenisation

O. Schwander (Master MIND - Sorbonne




Exemple (3) : le texte

> Aujourdhui il | pleut | et | je | n ‘
#

>:m1|w2\ws v | v v EONEEY -

Cependant le MLP n’est plus du tout adapté
@ Pour un MLP, chaque dimension a son propre sens
e Pas de possibilités de permuter les dimensions, de définir des permutations

= Impossible de traiter les invariances

= Impossible de traiter des longueurs variables

2025-2026 18/1
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Architecture convolutionnelle 1D

Aujourd'hui |il | pleut | et | je | n ‘[dime Jpas| cela
ENENENENEY B

X

Un filtre de
convolution | ! | 0 ]\ !

Principe d’une convolution
@ Filtre qui effectue une somme pondérée sur une petite fenétre des entrées
@ Les poids du filtre détermine la fonction du filtre

@ Le filtre est passé itérativement sur toute la séquence et produit une sortie scalaire a
chaque position

@ Il permet de ”détecter” la présence d’une caractéristique & une position

= =y = e
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Architecture convolutionnelle 1D

‘Aujourd'hui ‘il ‘pleutl etl je ‘ n _
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Couche Convolutionnelle de 4 filtres, taille de noyau | K s;ze
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Caractéristiques d'une convolution
e Taille du noyau : taille de la fenétre glissante
e Stride : déplacement du noyau a chaque itération

@ La convolution peut étre définie en 1 dimension, en 2, ..tout dépend du
type de signal en entrée (texte, image, vidéo, séries temporelles)

2025-2026 20/1
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Architecture convolutionnelle 1D
' Activation Autres couches Activation

{0

(
Convolution
RelLU
1
|
i
i
1 sortie par filtre de
derniére couche

Utilisation pour de la classification

e Série de convolutions qui permettent de repérer la présence ou 1’absence
de certaines caractéristiques linguistiques

e Pour obtenir un vecteur de dimension fixe, on peut prendre le maximum
de chaque filtre de la derniére couche (max-pooling global).

e La sortie des couches convolutionnelles est donc un vecteur de taille le
nombre de filtres de la derniére couche, chaque filtre spécialisé pour une
caractéristique particuliere

e Utilisation d’'un MLP pour la tache subséquente.

er MIND - Sorbonne 2025-2026 21/1




Convolution 2D

5 x 5 - Image Matrix 3 x 3 - Filter Matrix

@ Ld
Convolved Convolved Convolved
Image Feature Image Feature Image Feature
[4]2 4]
all
L]
‘ ‘ Convolved . Convolved
mage Feature mage Feature image Feature
[4]3]a] [+]3]a] [«]3]a]
[2]a]3] 2] [2]a]z]
=[] FIE [2]3]4]
. Convolved ‘ Convolved ’ Convolved
mage Feature mage Feature mage Feature

Application d’une transformation linéaire sur toutes les régions de ’image
= ) = = =
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Couche de Pooling

©3: 1. maps 18@10x10
C1: feature maps S4: 1. maps 16@5x5
@288

52: f. maps
B4

INPUT
32x32

I
| Full condection | Gaussion cannections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

Fig. 2 Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a st of units
whose weights are constrained 1o be identical.

POOhl’lg (Ou SUbsa‘mphng) : Single depth slice
Réduire la dimensionalité de T2 4
. max pool with 2x2 filters
sortie 5(6|7 |8 andstie2 68
5 3 | 2 [EINRO; 3|4
o Max Pooling : on prend le S
max sur une fenétre
. o y
o Average Pooling : on fait illustration :
https://medium.com/@RaghavPrabhu/understanding-
la moyenne of-convolutional-neural-network-cnn-deep-
. learning-99760835f148
e Sum Pooling : la somme ...
v
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Couche convolutionnelle usuelle

Pooling

Convolution

Filter (3 * 3)
Max pooling

- 3*3
9*9
11711
g Dopt s
I
o | s |4 (1) Max Pool ith | ’
x 2x2 Filters & Stride 2 s 8

Pooling layer

)

Detector layer: Nonlinearity
e.g., rectified linear

7y

Convolution layer:
Affine transform

Tnput to layers




Réseaux convolutifs

INPUT

COHVGL\I'FIGN + RELU

— CAR
— TRUCK
— VAN
[m] [ —micveLe
FuLLY
POOLING CONVOLUTION + RELU  POOLING FLATTEN L rerep  SOFTMAX
o N
FEATURE LEARNING CLASSIFICATION
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Exemple
Reconnaissance de caractéres [Duda et al 00]
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Exemple

Reconnaissance de caractéres (couches internes) [Duda et al 00]

sample training patterns

learned input-to-hidden weights

T TT 1T T
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AlexNet (2012)

@ 11 x 11, 5 x 5,3 x 3 convolutions
e Max-pooling, ReLU activations

e Dropout et Data-augmentation

er MIND - Sorbonng 2025-2026 28 /1



Réseaux récurrents

Pour les séquences

L’objectif est de prédire I’élément suivant d’une séquence : (x°,x!,...,x")
Hypothese : x'1 = f(x*, h*) 1’élément suivant d’une séquence dépend des
éléments précédents et d’un état mémoire latent.

Le réseau prédit pour chaque passage 1'état h® latent.

Un autre réseau est utilisé pour “décoder” 1’état mémoire en la valeur x*
associée.

O. Schwander (Master MIND - Sorbonng 2025-2026 29/1



Long Short Term Memory (LSTM) et Gated Recurrent
Unit (GRU)

hy

Ca [ N c

x + >

Cann>
I ey SO 26
t (A t

o o tan |o

L N I I _»hf
J
Xt
(a) Long Short-Term Memory (b) Gated Recurrent Unit

Deux variantes des RNNs
e Un processus de mémoire mis-a-jour automatiquement

e Permet de se "souvenir” (d’avoir une information persisente d’état en
état)

O. Schwander (Master MIND - Sorbonng 2025-2026 30/1



Et beaucoup d’autres

e RBMs (Restricted Boltzmann Machine)

V.A.E. (Variational Auto-encoder)

e G.A.N. (Generative Adversial Network)

e Mécanisme d’attention (globale et self-attention)

Stochastic Unit (Reinforce, Gumbel-Softmax, Straight-Through
estimator)

O. Schwander (Master MIND - Sorbonng 2025-2026 31/1
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Quelques révolutions du Deep Learning - 1

ImageNet Résultats depuis 2010

o Challenge de classification =
d’images 2009 oz

@ Arrivée du Deep en 2012 - écrase 'g 001:
la concurrence I

e Emergences des modeles les plus S oss
connus : AlexNet, Inception, ’
ResNet, ViT... ) J

SRTE JESES R W% B GI™ 0
ok isw BPET ) MEECRY MW Ak
R PR o] A B - ECR N5

mammal —— placental —— carnivore —— canine —— dog ——workingdog —— husky

s Illi IIE TEA Bay Bl
=0E ~EE st el | EIEN BTEE
o l7¢ = THRF 5 ENGaU) walZ3 M=poi

vehicle craft —  watercraft — salllngvessel —  sailboat —  trimaran
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Quelques révolutions du Deep Learning - 2

Deep Q-Learning/Alpha[Go/Zero] Arbre d’exploration
e Capable de jouer a des jeux -
génériques sans connaitre les regles [

@ 2015 : bat pour la premiere fois
un joueur professionnel de Go

@ 2017 : bat le champion du monde fa |
de Go SN S,

- .
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Quelques révolutions du Deep Learning - 3

Generative Adversarial Network (2014) Transfert de style

Summer 7 Winter

e Nouveau paradigme d’apprentissage :
faussaire contre policier

o Enormément de domaines
d’application, en particulier la summer — viner
génération d’image :

e Capable d’apprendre des
caractéristiques latentes

Fake?
Real?
7~ N(u,0) Real images X
s
= ‘4]
O. Schwander ( er MIND - Sorbonng 2025-2026
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Quelques révolutions du Deep Learning - 4

Modeles de Langues

e Origine : word2vec (2013)
(apprentissage de représentation),
explosion des performances avec le
concept d’attention (Transformer,
2017)

e Ont révolutionné tout en TAL :
traduction, ChatBot, Recherche
d’Information, ...

o Multiples modeles : GPT, BERT,
ELMO, Galactica

ChatGPT chatbot

What s brandolini's law?

Brandolini's law, also known as the "Bullshit Asymmetry Principle,"
is a humorous aphorism that states: “The amount of energy needed
to refute bullshitis an order of magnitude bigger than to produce

it." In other words, it takes more effort and time to debunk a false or
misleading statement than it does to make the statement in the first

place.

The law is named after Alberto Brandolini, an ltalian software
developer who coined the term in a tweet in 2013. Brandolini's law
is often used to describe the challenges of debunking
misinformation or false claims, particularly in the age of social
media, where false and misleading information can spread quickly

and easily.

While Brandolini's law is not a formal scientific principle, itis a
useful way of llustrating the challenges of combating
misinformation and the importance of carefully evaluating
information before accepting it as true.

MIND
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Et quand on mélange toutes ces révolutions ...

On obtient DALL-E, Stable Diffusion et autres modeles du genre
classroom of college students, sorbonne university| trending in artst: a friendly robot with kids, trending in artstation, picasso style
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