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Retour sur le modèle linéaire

Problématique de l’apprentissage supervisé
Ensemble d’apprentissage {(xi, yi)} ∈ X × Y, ensemble de fonctions F
un coût L(ŷ, y) : Y × Y → R+, trouver f∗ = argminf∈F

∑
i L(f(xi), yi)

Perceptron

Hypothèse linéaire : fw(x) = w0 +
∑d

i=1 wixi

Coût perceptron : L(fw(x), y) = max(0,−fw(x)y)
Gradient :

∇wL(fw(x), y) =

{
0 si (−y < w.x >) < 0
−yx sinon
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Limites du perceptron
Est-il capable de séparer ces données ?
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Combinons des neurones

Combiner des neurones ⇒ suffisant ?
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Combinons des neurones

Combiner des neurones ⇒ suffisant ?
Non ! il faut introduire de la non linéarité, sinon équivalent à un
perceptron …
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Un pas vers les réseaux profonds

Quelle non-linéarité ?
I Fonction signe ?
⇒ dérivée problématique …
I Fonctions tanh, sigmoïde, …
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Un pas vers les réseaux profonds

Quelle non-linéarité ?
I Fonction signe ?
⇒ dérivée problématique …
I Fonctions tanh, sigmoïde, …
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Plan

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 7 / 1



Pour l’inférence

Vocabulaire
Inférence : passe forward
g fonction d’activation (non linéarité du réseau)
ai activation du neurone i
zi sortie du neurone i (transformé non linéaire de l’activation).
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Pour l’apprentissage

Objectif : apprendre les poids
Choix d’un coût : moindres carrés
L(ŷ, y) = (ŷ − y)2 (pourquoi est ce un bon choix ?)
Mais à quel(s) neurone(s) et comment répartir l’erreur entre les poids ?

⇒ Rétro-propagation de l’erreur :
I corriger un peu tous les poids …
I en estimant la part de chacun dans l’erreur
I en commençant par la fin et en figeant au fur et à mesure le réseau

⇒ descente de gradient : on cherche à calculer tous les ∂L(ŷ,y)
∂wij
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Calcul du gradient : chain rule
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Plan
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Analyse de la surface d’erreur
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Analyse de la surface d’erreur
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Exemple
Le XOR selon [Duda et al 00]
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Exemple

Non convexité des régions apprises [Duda et al 00]
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Plan
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Réseau : assemblage de modules

ground
truth

Un module Mk

a des entrées : le résultat de la couche précédente zk−1

a possiblement des paramètres W(k) [vu également comme des entrées]
produit une sortie zk
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Type usuel de modules : Module linéaire

Transformation linéaire paramétrée de Rd vers Rd′

zk = Mk(zk−1,Wk) = Wkzk−1 avec Wk ∈ Rd × Rd′
, zk+1 ∈ Rd′

Chaque sortie zk+1
i = Wk

i,.zk =< wk
i , zk > correspond au calcul d’un

perceptron
La matrice Wk est l’empilement des wi, poids de chaque perceptron.
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Type usuel de modules : Module d’activation

tanh

Fonction d’activation de Rd vers Rd

tangente hyperbolique :
Mk(zk−1, 0) = tanh(zk−1) = (tanh(zk−1

1 ), tanh(zk−1
2 ), . . . , tanh(zk−1

d ))

sigmoïde : Mk(zk−1, 0) = σ(zk−1) = (σ(zk−1
1 ), σ(zk−1

2 ), . . . , σ(zk−1
d ))

ReLU : Mk(zk−1, 0) = ReLU(zk−1) =
(max(0, zk−1

1 ),max(0, zk−1
2 ), . . . ,max(0, zk−1

d ))
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Type usuel de modules : Module de coût

W1

M1
x z1=M1(x,W1) 

M2 Mk L(ŷ,y) 

W2 Wk y 

ŷ=zk
=Mk(zk-1,Wk)

Fonction de coût
Bloc final : deux entrées, la supervision et la sortie du réseau ŷ = zk.

MSE : L(ŷ, y) = ‖ŷ − y‖2

Negative Log-Likelihood : L(ŷ, y) = −
∑d

i=1 yi log ŷi

KL-divergence : L(ŷ, y) = −
∑d

i=1 yilog ŷi
yi

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 23 / 1



Un réseau Assemblage de modules

W1

M1
x z1=M1(x,W1) 

M2 Mk L(ŷ,y) 

W2 Wk y 

ŷ=zk
=Mk(zk-1,Wk)

Un module Mk est caractérisé
par ses entrées : le résultat de la couche précédente zk−1 (et
potentiellement d’autres variables)
par possiblement ses paramètres Wk (vu également comme des entrées)
produit une sortie zk = Mk(zk−1,Wk)

D’un point de vue formel, il n’y pas de différences entre les paramètres du
module et les entrées : ce sont tous des arguments de la fonction du module.
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Rétro-propagation du gradient

tanh

Pour apprendre le réseau :
Pour chaque module, il faut calculer ∇WkL(ŷ, y)
Cas simple : paramètres constants (module d’activation), le gradient est
nul (il n’y a rien à apprendre pour ce module)
Rétro-propagation pour les autres.
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Zoom sur un module

z1h-1 

z2h-1

z3h-1 

zdh-1 

z1h 
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Wij
h

zih-1 

zjh 

Mh

Wh

Mh+1
z1h+1 

z2h+1

zd''h+1 

zjh+1 

Wh+1

Rétro-propagation pour Mh, zh = M(zh−1,Wh)

∂L
∂wh

ij
=

∑
k

∂L
∂zh

k

∂zh
k

∂wh
ij
= ∂L

∂zh
j

∂zh
j

∂wh
ij
= ∂L

∂zh
j

∂Mh(zh−1,Wh)

∂wh
ij

( wh
ij n’influe que sur zh

j )

∂L
∂zh

j
=

∑
k

∂L
∂zh+1

k

∂zh+1
k

∂zh
j

=
∑

k
∂L

∂zh+1
k

Mh+1(zh,Wh)

∂zj
j

On introduit δh
j = ∂L

∂zh
j
=

∑
k δ

h+1
k

∂Mh+1(zh,Wh)

∂zj
j

: ∂L
∂wh

ij
= δh

j
∂Mh(zh−1,Wh)

∂wh
ij

⇒ Les δh
i sont calculés en partant de la fin du réseau

Pour la dernière couche, δlast
j = ∂L(zlast,y)

∂zlast
j

, le gradient du coût par rapport
à la prédiction.

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 26 / 1



Zoom sur un module
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Rétro-propagation pour Mh, zh = M(zh−1,Wh)

Avec δh
j = ∂L

∂zh
j
=

∑
k δ

h+1
k

∂Mh+1(zh,Wh)

∂zj
j

: ∂L
∂wh

ij
= δh

j
∂Mh(zh−1,Wh)

∂wh
ij

Pour chaque module, on a besoin :
du gradient ∇WhMh(zh−1,Wh) par rapport à ses paramètres : maj des
paramètres (nul si pas de paramètres)
du gradient ∇zh−1Mh(zh−1,Wh) par rapport à ses entrées :
rétro-propagation de l’erreur

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 26 / 1



Complexité et expressivité

Efficacité en apprentissage
I En O (|w|) pour chaque passe d’apprentissage où |w| est le nombre de poids
I Il faut typiquement plusieurs centaines de passes (voir plus loin)
I Il faut typiquement recommencer plusieurs dizaines de fois un

apprentissage en partant avec différentes initialisations des poids
Efficacité en reconnaissance

I Possibilité de temps réel

Expressivité
Quelle influence du nombre de couches ?
du nombre de neurones par couche ?

⇒ Une couche cachée suffit pour un apprentissage universel ! Mais …
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Vers les réseaux profonds
Problème : plus le réseau est profond plus il est dur à entraîner

le gradient s’évapore (vanishing)
le sur-apprentissage est très favorisé

Quelques solutions
utiliser des architectures peu propices au sur-apprentissage (convolutives,
RBM, . . .)
Early-stopping
Apprentissage en bruitant les données d’entrées

⇒ pas suffisant
Première passe d’apprentissage pour “bien initialiser” les couches ⇒
(apprentissage couche par couche, auto-encoders)
Drop-out : permet de limiter le sur-apprentissage (éteindre/supprimer un
nombre de neurones aléatoirement pendant l’apprentissage)
utilisation de fonctions d’activation spécifiques (ReLU etc)
utilisation d’architecture spécifiques (couches résiduelles etc)
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Plan
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Topologie typique

Flot des signaux

Couche
d’entrée

Couche
cachée

Couche
de sortie

Entrée X
Sortie Y

Pour chaque neurone k, la sortie zk :

zk = g

 d∑
j=0

wj,kzj

 = g (ak)

où
wj,k : poids de la connexion de la
cellule j à la cellule k
ak : activation de la cellule k
ak =

∑d
j=0 wj,kzj

g : fonction d’activation

Apprentissage :
Minimiser la fonction de coût L (W, {X,Y}) en fonction du paramètre
W = (wi,j)

Algorithme de rétro-propagation de gradient ∆wi,j ∝ ∂L
∂wi,j
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Fonction d’activation

Fonction à seuil

ak

yk

Fonction à rampe

ak

yk

Fonction radiale

ak

yk

Fonction sigmoïde

ak

yk

I g(a) = 1
1+exp(−a)

I g′(a) = g(a)(1 − g(a))
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Algorithme

1 Présentation d’un/des exemple(s) parmi l’ensemble d’apprentissage
2 Calcul de l’état du réseau (phase forward)
3 Calcul de l’erreur avec un coût donné : e.g. = (y − ŷ)2)
4 Calcul des gradients (par l’algorithme de rétro-propagation du gradient)
5 Modification des poids
6 Critère d’arrêt (sur l’erreur, nombre de présentation d’exemples...)
7 Retour en 1
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La rétro-propagation de gradient

Le problème :
I Détermination des responsabilités (credit assignment problem)
I Quelle connexion est responsable, et de combien, de l’erreur ?

Principe :
I Calculer l’erreur sur une connexion en fonction de l’erreur sur la couche

suivante
Deux étapes :

1 Evaluation des dérivées de l’erreur par rapport aux poids
2 Utilisation de ces dérivées pour calculer la modification de chaque poids
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La rétro-propagation de gradient

ai : activation de la cellule i
zi : sortie de la cellule i
δi : erreur attachée à la cellule i

i j k
wi,j

zi

wj,k

zj
δj

yk

δk

cellule cachée cellule de sortie
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Passe avant (forward) Illustrations J.-N. Vittaut

x0 x1 x2 x3 xd

i

s

Couche
d’entrée

Couche
cachée

Couche
de sortie
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w0 w1 w2 w3 wd

Couche
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Couche
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Couche
de sortie

ai(x) = w0+

d∑
j=1

wjxj

zi(x) = g (ai(x))
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Passe avant (forward) Illustrations J.-N. Vittaut

x0 x1 x2 x3 xd

i

s

w0 w1 w2 w3 wd

wi,j

Couche
d’entrée

Couche
cachée

Couche
de sortie

ai(x) = w0+

d∑
j=1

wjxj

zi(x) = g (ai(x))

ŷs(x) =
k∑

i=1
wi,szi
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Passe arrière (backward)

xj

i

s
δs = g′(as)(ys−ŷs)

δs : erreur en sortie
δi : somme des erreurs provenant des cellules suivantes
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Passe arrière (backward)

xj

i

s

wi,s
δs = g′(as)(ys−ŷs)

wt+1
i,s = wt

i,s−η(t)δsai

δi = g′(ai)
∑

s∈coucheSuiv.

wi,sδs

δs : erreur en sortie
δi : somme des erreurs provenant des cellules suivantes
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Passe arrière (backward)

xj

i

s

we,i

wi,s
δs = g′(as)(ys−ŷs)

wt+1
i,s = wt

i,s−η(t)δsai

δi = g′(ai)
∑

s∈coucheSuiv.

wi,sδs

wt+1
xj,i = wt

xj,i−η(t)δixj

δs : erreur en sortie
δi : somme des erreurs provenant des cellules suivantes
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La rétro-propagation de gradient

1. Evaluation de l’erreur L due à chaque connexion : ∂L
∂wi,j

I calculer l’erreur sur la connexion wi,j en fonction de l’erreur après la cellule
j

∂L
∂wi,j

=
∂L
∂aj

∂aj

∂wi,j
= δjzi

I Pour les cellules de la couche de sortie :

δk =
∂L
∂ak

= g′(ak)(yk − ŷk)

I Pour les cellules d’une couche cachée :

δj =
∂L
∂aj

=
∑

k

∂L
∂ak

∂ak

∂aj
=

∑
k

δk
∂ak

∂zj

∂zj

∂aj
= g′(aj) ·

∑
k

wj,kδk
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Plan
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PyTorch et Tensorflow
PyTorch, c’est …

Un framework pour le développement et l’apprentissage de réseaux Deep
sur CPU et GPU
Une architecture modulaire de contenants et conteneurs pour la
construction d’architecture flexible
Un mécanisme de différenciation automatique : l’Autograd
Une couche d’abstraction pour l’optimisation qui permet d’utiliser une
variété de descentes de gradient
Une gestion simplifiée des données pour la constitution des mini-batchs

PyTorch vs TensorFlow
PyTorch plus récent, donc moins intégré dans l’industrie
Déploiement, rapidité et processus industriel en faveur de TensorFlow
Flexibilité, prototyping, simplicité en faveur de PyTorch

Les deux frameworks ont tendance à se rapprocher en termes de
fonctionnalités ces derniers temps.
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Objet de base en PyTorch : le Tenseur
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Autograd et Graphe de calcul



b

d

y

e

Passe Forward

Passe Backward

Graphe de calcul
Graphe orienté, décrit l’enchaînement des opérations de calcul
Chaque source est une variable d’entrée, un seul nœud de sortie : le
résultat du calcul
En connaissant les dérivées de chaque opération, le graphe permet de
calculer les gradient de la sortie par rapport à chaque variable d’entrée.
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Autograd en PyTorch : Régression linéaire

Nécessite d’avoir le flag requires_grad fixé à True lorsque l’on souhaite calculer le
gradient par rapport à ce tenseur :

data_x, data_y = ...
w = torch.randn(1,data_x.size(1),requires_grad=True)
b = torch.randn(1,1,requires_grad=True)

On effectue le calcul

yhat = (x @ w.T)+b
loss_mse = ((yhat.view(-1,1)-data_y.view(-1,1))**2).sum()
loss_mse = loss_mse/data_x.size(0)

Puis on exécute l’Autograd

loss_mse.backward()

On obtient les gradients de loss_mse par rapport à w et b

print(w.grad, b.grad)
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Les premiers pièges et quelques astuces
Le graphe de calcul coûte très cher ! (en mémoire, en temps)

I par défaut, un tenseur est créé sans le flag requires_grad
I si un backward est effectué ⇒ message d’erreur
I les gradients intermédiaires ne sont pas stockés ! (juste calculés et oubliés)

Possibilité de désactiver temporairement l’autograd :
with torch.no_grad():

# graphe de calcul désactivé
w = ...
z = ...

# graphe de calcul activé
y = ...

Une fois le backward exécuté, on ne peut plus le refaire (une seule passe) !
L’opération est cumulative ! La variable grad n’est pas remise à zéro, tout
s’accumule (pourquoi ?)
A retenir : z.backward() ⇒ dérivée partielle de z par rapport à tout ce
qui a servi à la construire (et résultats dans la variable grad des variables
en question).
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