
Introduction au Deep LEarning
Cours 1

Du perceptron aux réseaux de neurones

Olivier Schwander
olivier.schwander@sorbonne-universite.fr

Master MIND - Sorbonne Université

2025-2026

Slides de N. Baskiotis et V. Guigue

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 1 / 1

Retour sur le modèle linéaire

Problématique de l’apprentissage supervisé
Ensemble d’apprentissage {(xi, yi)} ∈ X × Y, ensemble de fonctions F
un coût L(ŷ, y) : Y × Y → R+, trouver f∗ = argminf∈F

∑
i L(f(xi), yi)

Perceptron

Hypothèse linéaire : fw(x) = w0 +
∑d

i=1 wixi

Coût perceptron : L(fw(x), y) = max(0,−fw(x)y)
Gradient :

∇wL(fw(x), y) =

{
0 si (−y < w.x >) < 0
−yx sinon

x1

x2

x3

1

xd

w0
w1
w2
w3

wd

f(x)
g(f(x))

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 2 / 1

Limites du perceptron
Est-il capable de séparer ces données ?

4 2 0 2 4

4

2

0

2

4

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 3 / 1

Combinons des neurones

Combiner des neurones ⇒ suffisant ?

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 4 / 1

Combinons des neurones

Combiner des neurones ⇒ suffisant ?
Non ! il faut introduire de la non linéarité, sinon équivalent à un
perceptron …

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 5 / 1

Un pas vers les réseaux profonds

Quelle non-linéarité ?
I Fonction signe ?
⇒ dérivée problématique …
I Fonctions tanh, sigmoïde, …

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 6 / 1

Un pas vers les réseaux profonds

Quelle non-linéarité ?
I Fonction signe ?
⇒ dérivée problématique …
I Fonctions tanh, sigmoïde, …

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 6 / 1

Un pas vers les réseaux profonds

Quelle non-linéarité ?
I Fonction signe ?
⇒ dérivée problématique …
I Fonctions tanh, sigmoïde, …

4 3 2 1 0 1 2 3 4

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 tanh(x+1)
tanh(x-1)
tanh(x-1)-tanh(x+1)+0.5

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 6 / 1

Plan

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 7 / 1

Pour l’inférence

Vocabulaire
Inférence : passe forward
g fonction d’activation (non linéarité du réseau)
ai activation du neurone i
zi sortie du neurone i (transformé non linéaire de l’activation).

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 8 / 1

Pour l’apprentissage

Objectif : apprendre les poids
Choix d’un coût : moindres carrés
L(ŷ, y) = (ŷ − y)2 (pourquoi est ce un bon choix ?)
Mais à quel(s) neurone(s) et comment répartir l’erreur entre les poids ?

⇒ Rétro-propagation de l’erreur :
I corriger un peu tous les poids …
I en estimant la part de chacun dans l’erreur
I en commençant par la fin et en figeant au fur et à mesure le réseau

⇒ descente de gradient : on cherche à calculer tous les ∂L(ŷ,y)
∂wij

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 9 / 1

Calcul du gradient : chain rule

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 10 / 1

Calcul du gradient : chain rule

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 11 / 1

Calcul du gradient : chain rule

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 12 / 1

Plan

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 13 / 1

Analyse de la surface d’erreur

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 14 / 1

Analyse de la surface d’erreur

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 15 / 1

Analyse de la surface d’erreur

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 16 / 1

Exemple
Le XOR selon [Duda et al 00]

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 17 / 1

Exemple

Non convexité des régions apprises [Duda et al 00]

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 18 / 1

Plan

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 19 / 1

Réseau : assemblage de modules

ground
truth

Un module Mk

a des entrées : le résultat de la couche précédente zk−1

a possiblement des paramètres W(k) [vu également comme des entrées]
produit une sortie zk

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 20 / 1

Type usuel de modules : Module linéaire

Transformation linéaire paramétrée de Rd vers Rd′

zk = Mk(zk−1,Wk) = Wkzk−1 avec Wk ∈ Rd × Rd′
, zk+1 ∈ Rd′

Chaque sortie zk+1
i = Wk

i,.zk =< wk
i , zk > correspond au calcul d’un

perceptron
La matrice Wk est l’empilement des wi, poids de chaque perceptron.

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 21 / 1

Type usuel de modules : Module d’activation

tanh

Fonction d’activation de Rd vers Rd

tangente hyperbolique :
Mk(zk−1, 0) = tanh(zk−1) = (tanh(zk−1

1), tanh(zk−1
2), . . . , tanh(zk−1

d))

sigmoïde : Mk(zk−1, 0) = σ(zk−1) = (σ(zk−1
1), σ(zk−1

2), . . . , σ(zk−1
d))

ReLU : Mk(zk−1, 0) = ReLU(zk−1) =
(max(0, zk−1

1),max(0, zk−1
2), . . . ,max(0, zk−1

d))

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 22 / 1

Type usuel de modules : Module de coût

W1

M1
x z1=M1(x,W1)

M2 Mk L(ŷ,y)

W2 Wk y

ŷ=zk
=Mk(zk-1,Wk)

Fonction de coût
Bloc final : deux entrées, la supervision et la sortie du réseau ŷ = zk.

MSE : L(ŷ, y) = ‖ŷ − y‖2

Negative Log-Likelihood : L(ŷ, y) = −
∑d

i=1 yi log ŷi

KL-divergence : L(ŷ, y) = −
∑d

i=1 yilog ŷi
yi

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 23 / 1

Un réseau Assemblage de modules

W1

M1
x z1=M1(x,W1)

M2 Mk L(ŷ,y)

W2 Wk y

ŷ=zk
=Mk(zk-1,Wk)

Un module Mk est caractérisé
par ses entrées : le résultat de la couche précédente zk−1 (et
potentiellement d’autres variables)
par possiblement ses paramètres Wk (vu également comme des entrées)
produit une sortie zk = Mk(zk−1,Wk)

D’un point de vue formel, il n’y pas de différences entre les paramètres du
module et les entrées : ce sont tous des arguments de la fonction du module.

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 24 / 1

Rétro-propagation du gradient

tanh

Pour apprendre le réseau :
Pour chaque module, il faut calculer ∇WkL(ŷ, y)
Cas simple : paramètres constants (module d’activation), le gradient est
nul (il n’y a rien à apprendre pour ce module)
Rétro-propagation pour les autres.

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 25 / 1

Zoom sur un module

z1h-1

z2h-1

z3h-1

zdh-1

z1h

z2h

z3h

zd'h

Wij
h

zih-1

zjh

Mh

Wh

Mh+1
z1h+1

z2h+1

zd''h+1

zjh+1

Wh+1

Rétro-propagation pour Mh, zh = M(zh−1,Wh)

∂L
∂wh

ij
=

∑
k

∂L
∂zh

k

∂zh
k

∂wh
ij
= ∂L

∂zh
j

∂zh
j

∂wh
ij
= ∂L

∂zh
j

∂Mh(zh−1,Wh)

∂wh
ij

(wh
ij n’influe que sur zh

j)

∂L
∂zh

j
=

∑
k

∂L
∂zh+1

k

∂zh+1
k

∂zh
j

=
∑

k
∂L

∂zh+1
k

Mh+1(zh,Wh)

∂zj
j

On introduit δh
j = ∂L

∂zh
j
=

∑
k δ

h+1
k

∂Mh+1(zh,Wh)

∂zj
j

: ∂L
∂wh

ij
= δh

j
∂Mh(zh−1,Wh)

∂wh
ij

⇒ Les δh
i sont calculés en partant de la fin du réseau

Pour la dernière couche, δlast
j = ∂L(zlast,y)

∂zlast
j

, le gradient du coût par rapport
à la prédiction.

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 26 / 1

Zoom sur un module

z1h-1

z2h-1

z3h-1

zdh-1

z1h

z2h

z3h

zd'h

Wij
h

zih-1

zjh

Mh

Wh

Mh+1
z1h+1

z2h+1

zd''h+1

zjh+1

Wh+1

Rétro-propagation pour Mh, zh = M(zh−1,Wh)

Avec δh
j = ∂L

∂zh
j
=

∑
k δ

h+1
k

∂Mh+1(zh,Wh)

∂zj
j

: ∂L
∂wh

ij
= δh

j
∂Mh(zh−1,Wh)

∂wh
ij

Pour chaque module, on a besoin :
du gradient ∇WhMh(zh−1,Wh) par rapport à ses paramètres : maj des
paramètres (nul si pas de paramètres)
du gradient ∇zh−1Mh(zh−1,Wh) par rapport à ses entrées :
rétro-propagation de l’erreur

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 26 / 1

Complexité et expressivité

Efficacité en apprentissage
I En O (|w|) pour chaque passe d’apprentissage où |w| est le nombre de poids
I Il faut typiquement plusieurs centaines de passes (voir plus loin)
I Il faut typiquement recommencer plusieurs dizaines de fois un

apprentissage en partant avec différentes initialisations des poids
Efficacité en reconnaissance

I Possibilité de temps réel

Expressivité
Quelle influence du nombre de couches ?
du nombre de neurones par couche ?

⇒ Une couche cachée suffit pour un apprentissage universel ! Mais …

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 27 / 1

Vers les réseaux profonds
Problème : plus le réseau est profond plus il est dur à entraîner

le gradient s’évapore (vanishing)
le sur-apprentissage est très favorisé

Quelques solutions
utiliser des architectures peu propices au sur-apprentissage (convolutives,
RBM, . . .)
Early-stopping
Apprentissage en bruitant les données d’entrées

⇒ pas suffisant
Première passe d’apprentissage pour “bien initialiser” les couches ⇒
(apprentissage couche par couche, auto-encoders)
Drop-out : permet de limiter le sur-apprentissage (éteindre/supprimer un
nombre de neurones aléatoirement pendant l’apprentissage)
utilisation de fonctions d’activation spécifiques (ReLU etc)
utilisation d’architecture spécifiques (couches résiduelles etc)

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 28 / 1

Plan

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 29 / 1

Topologie typique

Flot des signaux

Couche
d’entrée

Couche
cachée

Couche
de sortie

Entrée X
Sortie Y

Pour chaque neurone k, la sortie zk :

zk = g

 d∑
j=0

wj,kzj

 = g (ak)

où
wj,k : poids de la connexion de la
cellule j à la cellule k
ak : activation de la cellule k
ak =

∑d
j=0 wj,kzj

g : fonction d’activation

Apprentissage :
Minimiser la fonction de coût L (W, {X,Y}) en fonction du paramètre
W = (wi,j)

Algorithme de rétro-propagation de gradient ∆wi,j ∝ ∂L
∂wi,j

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 30 / 1

Fonction d’activation

Fonction à seuil

ak

yk

Fonction à rampe

ak

yk

Fonction radiale

ak

yk

Fonction sigmoïde

ak

yk

I g(a) = 1
1+exp(−a)

I g′(a) = g(a)(1 − g(a))

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 31 / 1

Algorithme

1 Présentation d’un/des exemple(s) parmi l’ensemble d’apprentissage
2 Calcul de l’état du réseau (phase forward)
3 Calcul de l’erreur avec un coût donné : e.g. = (y − ŷ)2)
4 Calcul des gradients (par l’algorithme de rétro-propagation du gradient)
5 Modification des poids
6 Critère d’arrêt (sur l’erreur, nombre de présentation d’exemples...)
7 Retour en 1

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 32 / 1

La rétro-propagation de gradient

Le problème :
I Détermination des responsabilités (credit assignment problem)
I Quelle connexion est responsable, et de combien, de l’erreur ?

Principe :
I Calculer l’erreur sur une connexion en fonction de l’erreur sur la couche

suivante
Deux étapes :

1 Evaluation des dérivées de l’erreur par rapport aux poids
2 Utilisation de ces dérivées pour calculer la modification de chaque poids

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 33 / 1

La rétro-propagation de gradient

ai : activation de la cellule i
zi : sortie de la cellule i
δi : erreur attachée à la cellule i

i j k
wi,j

zi

wj,k

zj
δj

yk

δk

cellule cachée cellule de sortie

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 34 / 1

Passe avant (forward) Illustrations J.-N. Vittaut

x0 x1 x2 x3 xd

i

s

Couche
d’entrée

Couche
cachée

Couche
de sortie

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 35 / 1

Passe avant (forward) Illustrations J.-N. Vittaut

x0 x1 x2 x3 xd

i

s

w0 w1 w2 w3 wd

Couche
d’entrée

Couche
cachée

Couche
de sortie

ai(x) = w0+

d∑
j=1

wjxj

zi(x) = g (ai(x))

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 35 / 1

Passe avant (forward) Illustrations J.-N. Vittaut

x0 x1 x2 x3 xd

i

s

w0 w1 w2 w3 wd

wi,j

Couche
d’entrée

Couche
cachée

Couche
de sortie

ai(x) = w0+

d∑
j=1

wjxj

zi(x) = g (ai(x))

ŷs(x) =
k∑

i=1
wi,szi

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 35 / 1

Passe arrière (backward)

xj

i

s
δs = g′(as)(ys−ŷs)

δs : erreur en sortie
δi : somme des erreurs provenant des cellules suivantes

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 36 / 1

Passe arrière (backward)

xj

i

s

wi,s
δs = g′(as)(ys−ŷs)

wt+1
i,s = wt

i,s−η(t)δsai

δi = g′(ai)
∑

s∈coucheSuiv.

wi,sδs

δs : erreur en sortie
δi : somme des erreurs provenant des cellules suivantes

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 36 / 1

Passe arrière (backward)

xj

i

s

we,i

wi,s
δs = g′(as)(ys−ŷs)

wt+1
i,s = wt

i,s−η(t)δsai

δi = g′(ai)
∑

s∈coucheSuiv.

wi,sδs

wt+1
xj,i = wt

xj,i−η(t)δixj

δs : erreur en sortie
δi : somme des erreurs provenant des cellules suivantes

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 36 / 1

La rétro-propagation de gradient

1. Evaluation de l’erreur L due à chaque connexion : ∂L
∂wi,j

I calculer l’erreur sur la connexion wi,j en fonction de l’erreur après la cellule
j

∂L
∂wi,j

=
∂L
∂aj

∂aj

∂wi,j
= δjzi

I Pour les cellules de la couche de sortie :

δk =
∂L
∂ak

= g′(ak)(yk − ŷk)

I Pour les cellules d’une couche cachée :

δj =
∂L
∂aj

=
∑

k

∂L
∂ak

∂ak

∂aj
=

∑
k

δk
∂ak

∂zj

∂zj

∂aj
= g′(aj) ·

∑
k

wj,kδk

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 37 / 1

Plan

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 38 / 1

PyTorch et Tensorflow
PyTorch, c’est …

Un framework pour le développement et l’apprentissage de réseaux Deep
sur CPU et GPU
Une architecture modulaire de contenants et conteneurs pour la
construction d’architecture flexible
Un mécanisme de différenciation automatique : l’Autograd
Une couche d’abstraction pour l’optimisation qui permet d’utiliser une
variété de descentes de gradient
Une gestion simplifiée des données pour la constitution des mini-batchs

PyTorch vs TensorFlow
PyTorch plus récent, donc moins intégré dans l’industrie
Déploiement, rapidité et processus industriel en faveur de TensorFlow
Flexibilité, prototyping, simplicité en faveur de PyTorch

Les deux frameworks ont tendance à se rapprocher en termes de
fonctionnalités ces derniers temps.

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 39 / 1

Objet de base en PyTorch : le Tenseur

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 40 / 1

Autograd et Graphe de calcul

b

d

y

e

Passe Forward

Passe Backward

Graphe de calcul
Graphe orienté, décrit l’enchaînement des opérations de calcul
Chaque source est une variable d’entrée, un seul nœud de sortie : le
résultat du calcul
En connaissant les dérivées de chaque opération, le graphe permet de
calculer les gradient de la sortie par rapport à chaque variable d’entrée.

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 41 / 1

Autograd en PyTorch : Régression linéaire

Nécessite d’avoir le flag requires_grad fixé à True lorsque l’on souhaite calculer le
gradient par rapport à ce tenseur :

data_x, data_y = ...
w = torch.randn(1,data_x.size(1),requires_grad=True)
b = torch.randn(1,1,requires_grad=True)

On effectue le calcul

yhat = (x @ w.T)+b
loss_mse = ((yhat.view(-1,1)-data_y.view(-1,1))**2).sum()
loss_mse = loss_mse/data_x.size(0)

Puis on exécute l’Autograd

loss_mse.backward()

On obtient les gradients de loss_mse par rapport à w et b

print(w.grad, b.grad)

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 42 / 1

Les premiers pièges et quelques astuces
Le graphe de calcul coûte très cher ! (en mémoire, en temps)

I par défaut, un tenseur est créé sans le flag requires_grad
I si un backward est effectué ⇒ message d’erreur
I les gradients intermédiaires ne sont pas stockés ! (juste calculés et oubliés)

Possibilité de désactiver temporairement l’autograd :
with torch.no_grad():

graphe de calcul désactivé
w = ...
z = ...

graphe de calcul activé
y = ...

Une fois le backward exécuté, on ne peut plus le refaire (une seule passe) !
L’opération est cumulative ! La variable grad n’est pas remise à zéro, tout
s’accumule (pourquoi ?)
A retenir : z.backward() ⇒ dérivée partielle de z par rapport à tout ce
qui a servi à la construire (et résultats dans la variable grad des variables
en question).

O. Schwander (Master MIND - Sorbonne Université) IDLE 2025-2026 43 / 1

