Introduction au Deep LEarning
Cours 1
Du perceptron aux réseaux de neurones

Olivier Schwander

olivier.schwander@sorbonne-universite.fr

Master MIND - Sorbonne Université

2025-2026

Slides de N. Baskiotis et V. Guigue

O. Schwander (Master MIND - Sorbonng 2025-2026

1/1

Retour sur le modele linéaire

Problématique de I'apprentissage supervisé

e Ensemble d’apprentissage {(x',y')} € X x Y, ensemble de fonctions F
o un cotit L(§,y) : Y x Y = R, trouver f* = argminger y; L(f(x}), y')

Perceptron
e Hypotheése linéaire : f,(x) = wo + Zid:l WiX;
e Coiit perceptron : L(fy(x),y) = max(0, —f (x)y)

o Gradient :

VuwL(fw(x),y) = {

0 si(—y<wx>)<0
—yx sinon

O. Schwander (Master MIND - Sorbonng

1
X1
X2

X3

Xd

2025-2026

2/1

Limites du perceptron

Est-il capable de séparer ces données ?

-15

-2 -2 g 2 T

2025-2026

3/1

Combinons des neurones

X
N
05{ -
<. 8o °
@60 0
P 00| WL cae
s : ':.‘.. S
05 "¢ 1
-2 -1 0
1 1 1
fi(x) = W11 X1+W2(1)X2+W(§1)» f(x) = W12 X1+W2(2)X2+W(§2)
2 2
fi(x) = wiD A(x) + wiy f(x) + w?)
o Combiner des neurones = suffisant ?
2025-2026

Schwander (N r MIND - Sorbonng¢

Combinons des neurones

X

o

0.5 . 0%0

5 . CEENE

oo, L lae TR

iizr . :" °° 2 ? K :.

—05f 8o " H %
w) 1

-2 -1 0 1 2
Al = witxtwietull), hx) = wihxtwh et uly
A(x) = Wit (%) + wi B(x) + wy)
A(x) = wi (W + witx + wl) + wd? (widx + wiy)xe + wiy)) + wy)

2 1 2 1 2 1 2 1 2 2 1 2 1
& fi(x) = Xl(W1(1)W1(1)+W2(1)W1(2))+X2(W1(1)W2(1)+W2(1)W2(2))+W(§1)+W1(1)W(§1)+W2(1)Wéz)
e Combiner des neurones = suffisant 7
Non ! il faut introduire de la non linéarité, sinon équivalent a un
perceptron ...

O. Schwander (Master MIND -

Sorbonne

2025-2026 5/1

Un pas vers les réseaux profonds

X
3
o 0571 =« o
1 NS CE R
[oo
P 0o #% cso T .‘:"
o & od o . %
:.. ° & o’
IR o8 o
-0.5 s
.
[oo
T 2 -1 o0 2

@ Quelle non-linéarité ?

O. Schwander (Master MIND - Sorbonne

Un pas vers les réseaux profonds

X
¥
0571 =« o
i1 . :,no SE
Lo 2o
P 00l #°% °ao | ° .-':"
o & od o . %
ORI
L3 JS o g .
-05 R
.
Pl oo
Ty 2 -1 o 2

@ Quelle non-linéarité ?
» Fonction signe ?
= dérivée problématique ...

o F
chwander (Ma MIND - Sorbonnc

Un pas vers les réseaux profonds

X
1| NEB
H H . ':'.
® we
L] .‘.
z
1.00{ — tanh(x+1)
—— tanh(x-1)
0.754 — tanh(x-1)-tanh(x+1)+0.5
e Quelle non-linéarité ? /“
0z
» Fonction signe ? 00
= dérivée problématique .. -0
» Fonctions tanh, sigmoide, ... o
o
-1.00

Plan

Pour l'inférence

az = Wor+Wwi121+Wwe122

7 =g(as)

1

x Avec g(x) = 1+ exp(—x)
zl 31 = Wo1+Wi1X1+Wa1 X0
' a3y = Woa+WiaX1+WaXo

mz =g(a)

m 2 =g(a)

m

[

Vocabulaire
o Inférence : passe forward
e g fonction d’activation (non linéarité du réseau)
@ a; activation du neurone i

e 7; sortie du neurone i (transformé non linéaire de l’activation).

chwander (M r 2025-2026 8/1

Pour I'apprentissage

x

ground
371 truth
- y y

. > L —
E 3 Loss

o

Objectif : apprendre les poids

@ Choix d’un coiit : moindres carrés
L($,y) = (§ — y)? (pourquoi est ce un bon choix ?)
e Mais & quel(s) neurone(s) et comment répartir erreur entre les poids ?
= Rétro-propagation de lerreur :
corriger un peu tous les poids ...
en estimant la part de chacun dans I’erreur
en commencant par la fin et en figeant au fur et & mesure le réseau

= descente de gradient : on cherche a calculer tous les %
ij

Schwander (M r MIND - Sorbonn¢ 2025-2026

9/1

Calcul du gradient : chain rule

X

o

P 3 y Forward:
bl glag) > L §=05

Lo Loss y = -1

2!

Backward, poids de la derniere couche : V)L(7,y)

2
L(y,y) = (g(a3) —y)* = ((Wéf) + Wiz + Wz(f)zz) y)

oL _ oL odglas) _ a(g(éls) » 20" _
= =2g'(a3)(g(as) —)
afz) ;:L 83(32) avee Z Zfi? +vi‘?n+w{2>zz>
= = Zj
Ow, oL 3 8W Bwl.(lz) 8wl() Zi
Soit: —o = 28"(a3)(y — y)zi = Mise 2 jour possible
i

2025-2026 10/1

O. Schwander (Master MIND - Sorbonng

Calcul du gradient : chain rule

x
o ground
AN
H truth

7 b /A:orward.

L y=05

P Loss y=-
o

Backward, poids de la premiére couche: w,.(ll) (par exemple)

oL _ 9L dax — OL 1
6L 8L 631 avec a1 - 333(1(?31)) - 6a3g (al)Wll
- = Vi
Oa Owpny’ +w, X1 +wo X0
Owir Oay Owjy B T =X
(il
L oL oL ,
Soit: = a—alx,' = 8_33 I (a]_)W]_3 Xi
poids de la connexion

6‘w,~1
~—~
correction de wj erreur a propager

2025-2026 11/1

chwander (M

Calcul du gradient : chain rule

oL 0da; OL oL

= = Zi—
c’)w,-j aW,'j 8aj 881'

Z 8ak oL
(931 daj Day

il _Zg(ak wi) oL
5 v &

- N
erreur SUTJ erreur a propager
oL
On note: §; = ——
8aj

m Lorsque I'erreur arrive de plusieurs sources = somme

m Expression de I'erreur de la couche j par rapport a I'erreur de la couche k

O. Schwander (Master MIND - Sorbonng 2025-2026 12/1

Plan

Analyse de la surface d’erreur

O. Schwander (Ma

Analyse de la surface d’erreur

" 1' \h\h\
'W mmsm
“ 'm.'mlnn
mlm«uw {,
' mmmm il ,,,,,,
b ""1/, ’l'r,

O. Schwander (Master MIND - S

1 S
A. a

e
<

o
s

0

0
XY
¢00(0
0000&
N

)
R
AX N) \
AXY O
.,.,,%,,,,,”,,,,,, \
S ,.x.%% K

Exemple
Le XOR selon [Duda et al 00]

Exemple

Non convexité des régions apprises

[Duda et al 00]

Ry

er MIND

DA

Plan

Réseau : assemblage de modules

w®
v
Y
X ground
truth
s
]

) \My

Un module M*

o a des entrées : le résultat de la couche précédente zK—1

o a possiblement des paramétres W) [vu également comme des entrées]

e produit une sortie z*

O. Schwander (Master MIND - Sorbonng 2025-2026 20/1

Type usuel de modules : Module linéaire

z8¥ € R?T W e R gl e RY

= wliz’f -+ w2iz’2“ + ...+ 'Z,Udﬂ‘Z];
zF = Wz

. . 7 . 7’ 7z g
Transformation linéaire paramétrée de RY vers RY

o 75 = ME(z5"1, WK) = WhzE—1 avec Wk € RY x RY, zk+1 ¢ RY
k+1

i

e Chaque sortie z
perceptron

= Wk zK =< wk 2z > correspond au calcul d'un

o La matrice WX est I'empilement des w;, poids de chaque perceptron.

™ = - = =

chwander (M r 2025-2026

e

21/1

Type usuel de modules : Module d’activation

zF ¢ R? zFl e R?

Zk zk+1

1 — s 71

z’; ——teeeeee| s >
e I >
—_— e tanh |-------- >
—_—eeeee| e >
— | s >

S S R (T

2FT1 = tanh(2F)

Fonction d’activation de RY vers R4
e tangente hyperbolique :
ME(z5=1,0) = tanh(z*~1) = (tanh(z¥ 1), tanh(z5 1), ... ,tanh(zg_l))
o sigmoide : M¥(z5°1,0) = o(25°1) = (o(zF ™), 0(z57 1), ..., 0(z57h))
o ReLU : M¥(z5~1,0) = ReLU (7% 1) =
(max(0, zll‘fl), max(0, zgfl), ..., max(0, zgfl))

O. Schwander (Master MIND - Sorbonng 2025-2026 22/1

Type usuel de modules : Module de cofit

A
W1 W2 Wk
X Z‘I =M1 (x wi
—> M1 M2 - N MK
___________________ L

Fonction de cotit

Bloc final : deux entrées, la supervision et la sortie du réseau § = z*.

o MSE : L(,y) = [I§ - yl?
e Negative Log-Likelihood : L(y,y) = — Z?:l vi log ¥

e KL-divergence : L(y,y) = — Z?=1 yilog ;L

O. Schwander (Master MIND - Sorbonng 2025-2026 23/1

Un réseau Assemblage de modules

wi w2 wk
| | o
X Z’I=M1 (X,W1
— M Y oMK

Un module MX est caractérisé

o par ses entrées : le résultat de la couche précédente z5~1 (et
potentiellement d’autres variables)
e par possiblement ses parametres WX (vu également comme des entrées)
o produit une sortie z¥ = M¥(z<~1, Wk)
D’un point de vue formel, il n’y pas de différences entre les parametres du
module et les entrées : ce sont tous des arguments de la fonction du module.

O. Schwander (Master MIND - Sorbonng 2025-2026 24 /1

Rétro-propagation du gradient

zF € R? zFl e RY

zk zk+1

1 ———t oo [e >»—>"1

zg ——erereee| s >
—_—eeeee| e R
—— e tanh |-------- E—
——teeeeee| s >
—_—eeeee| e >

zy ——>pl s >—>z§+1

27T = tanh(z2f)

Pour apprendre le réseau :
e Pour chaque module, il faut calculer VyL(y,y)

o Cas simple : parameétres constants (module d’activation), le gradient est
nul (il n’y a rien & apprendre pour ce module)

o Rétro-propagation pour les autres.

O. Schwander (Master MIND - Sorbonng 2025-2026 25/1

Zoom sur un module

wh

h
2 M

Zzh'1

) w.h

h-1

Zg ———

Rétro-propagation pour MP, z"

o h h h/ h—1 h
9L Oz aL 9% aL oMM (z" ' W h oo h
=3 ganl_ﬁ._ = o = b (aw) (wi; n'influe que sur z;)
1) J 1) J ij
h+1 h+1, h yx/h
L _ oL Oz oL M7 (z,W7)
® b T Xk g o = 2ok 5t o]
h— hil MM WR) . L _ gh OMR(zMTWR)
o On introduit d; 6z =30 5. : Bub = 4 Fr

= Les 6! sont calculés en partant de la fin du réseau

6'18.813 _ aL(Zlast
J

@ Pour la derniere couche, azlm’y), le gradient du cott par rapport
j

a la prédiction.

er MIND - Sorbonne 2025-2026 26 /1

Zoom sur un module

h-1 mh

3 wih

Rétro—propagation pour M", zP = M(z"—1, Wh)

h _ h+1 ML (z" wh) | oL h oM (z" 1 wh)
Avec ¢j' = — Lk —023‘—. o =0l P

Pour chaque module, on a besoin :

o du gradient VyynM"(z2~1, Wh) par rapport a ses paramétres : maj des
parametres (nul si pas de parameétres)

o du gradient V,n-1M"(z"~1, Wh) par rapport a ses entrées :
rétro-propagation de l'erreur

er MIND - Sorbonne 2025-2026

26 /1

Complexité et expressivité

o Efficacité en apprentissage

» En O (Jw]) pour chaque passe d’apprentissage ol |w| est le nombre de poids

» 11 faut typiquement plusieurs centaines de passes (voir plus loin)
> Il faut typiquement recommencer plusieurs dizaines de fois un
apprentissage en partant avec différentes initialisations des poids

o Efficacité en reconnaissance
» Possibilité de temps réel

Expressivité
@ Quelle influence du nombre de couches ?

@ du nombre de neurones par couche ?

= Une couche cachée suffit pour un apprentissage universel ! Mais ...

Schwander (Master MIND - Sorbonne 2025-2026

27 /1

Vers les réseaux profonds

Probleme : plus le réseau est profond plus il est dur a entrainer
o le gradient s’évapore (vanishing)

@ le sur-apprentissage est tres favorisé

Quelques solutions

o utiliser des architectures peu propices au sur-apprentissage (convolutives,
RBM, ...)

o Early-stopping
o Apprentissage en bruitant les données d’entrées
= pas suffisant

e Premiére passe d’apprentissage pour “bien initialiser” les couches =
(apprentissage couche par couche, auto-encoders)

e Drop-out : permet de limiter le sur-apprentissage (éteindre/supprimer un
nombre de neurones aléatoirement pendant 'apprentissage)

o utilisation de fonctions d’activation spécifiques (ReLU etc)

e utilisation d’architecture spécifiques (couches résiduelles etc)
v

= = - = = SSA-u &

O. Schwander (Master MIND - Sorbonng 2025-2026 28 /1

Plan

Topologie typique
Couche Couche Couche
d’entrée cachée de sortie

Pour chaque neurone k, la sortie zy

d
no=g | Y Wiz | =gla)
j=0

ol
@ wjy : poids de la connexion de
cellule j a la cellule k
° ay: actiivation de la cellule k
ak = D _j_o WjKZj

o g : fonction d’activation

Flot des signaux

Apprentissage :

e Minimiser la fonction de cotlit L (W, {X,Y}) en fonction du parametre
W= (wi;)

o Algorithme de rétro-propagation de gradient Awj ; o< %

= =

O. Schwander (Master MIND - Sorbonng 2025-2026 30/1

Fonction d’activation

e Fonction a seuil e Fonction radiale
Yk Yk
ax ak
e Fonction a rampe e Fonction sigmoide
Yk Yk
ak ak

> 8(8) = Temre
» g'(a) = g(a)(1 — g(a))

O. Schwander (Master MIND - Sorbonne

Algorithme

@ Présentation d’un/des exemple(s) parmi I’ensemble d’apprentissage

@ Calcul de I'état du réseau (phase forward)

@ Calcul de Derreur avec un cofit donné : e.g. = (y — §))

@ Calcul des gradients (par 'algorithme de rétro-propagation du gradient)
@ Modification des poids

@ Critére d’arrét (sur l'erreur, nombre de présentation d’exemples...)

@ Retouren 1

O. Schwander (Master MIND - Sorbonng 2025-2026 32/1

La rétro-propagation de gradient

o Le probleme :

» Détermination des responsabilités (credit assignment problem)
» Quelle connexion est responsable, et de combien, de 'erreur 7

o Principe :

» Calculer 'erreur sur une connexion en fonction de ’erreur sur la couche
suivante

@ Deux étapes :

@ Evaluation des dérivées de I’erreur par rapport aux poids
@ Utilisation de ces dérivées pour calculer la modification de chaque poids

Schwander (Master MIND - Sorbonne 2025-2026 33/1

La rétro-propagation de gradient

@ a; : activation de la cellule i
@ z; : sortie de la cellule i
@ ¢; : erreur attachée a la cellule i

cellule cachée cellule de sortie

! l

0 B v

O. Schwander (Master MIND - Sorbonng

2025-2026

34/1

o .8 0 o o %
= = =\ < %
I R

[%5) Q =}
Oe o QS o
O 2 (GRRS) (GRS

Passe avant (forward) Tiustrations J.-N. Vittaut

(Master MIND -

ler

O. Schwanc

Passe avant (forward) iustrations J.-N. Vittaut

Couche
de sortie

Couche
cachée

Couche
d’entrée

O. Schwander (Master MIND - Sorbonng

Passe avant (forward) iustrations J.-N. Vittaut

Couche
de sortie

Couche

cachée

Couche
d’entrée

O. Schwander (Master MIND - Sorbonng

2025-2026 35/1

Passe arriere (backward)

@ Jg : erreur en sortie

Passe arriere (backward)

0s = g'(as) (ys—¥s)

t+1
i,s

= W?,s_n(t)asai

>

Wi,s(ss
s€coucheSuiv.

@ 0 :

erreur en sortie
] 6i :

O. Schwander (Master MIND - Sorbonng

somme des erreurs provenant des cellules suivantes

Passe arriere (backward)

0s = g'(as) (ys—¥s)

= wi —n(t)dsa;

. 6i = gl<ai) Z VVi,sés

s€coucheSuiv.

@ O, : erreur en sortie

@ 0; : somme des erreurs provenant des cellules suivantes

chwander (M r 2025-2026

36/1

La rétro-propagation de gradient

e 1. Evaluation de ’erreur L. due a chaque connexion : a?vL

ij
» calculer I'erreur sur la connexion wjj en fonction de I’erreur apres la cellule

J
oL OL 04
= - = 5j Zi
8Wi,j 8aj 8Wi’j
» Pour les cellules de la couche de sortie :

oL , N
de = P 8 (ax) (yx — Jx)

» Pour les cellules d’une couche cachée :

= 0L _ @%_ aaka%_/
%= Fa; _zk:aak b, 2=y, (a) ZW“‘(S"

O. Schwander (Master MIND - Sorbonng 2025-2026 37/1

Plan

PyTorch et Tensorflow

PyTorch, c’est ..

e Un framework pour le développement et 'apprentissage de réseaux Deep
sur CPU et GPU

@ Une architecture modulaire de contenants et conteneurs pour la
construction d’architecture flexible

@ Un mécanisme de différenciation automatique : 1’Autograd

@ Une couche d’abstraction pour 'optimisation qui permet d’utiliser une
variété de descentes de gradient

@ Une gestion simplifiée des données pour la constitution des mini-batchs

v

PyTorch vs TensorFlow
e PyTorch plus récent, donc moins intégré dans 'industrie
e Déploiement, rapidité et processus industriel en faveur de TensorFlow
o Flexibilité, prototyping, simplicité en faveur de PyTorch

Les deux frameworks ont tendance a se rapprocher en termes de
fonctionnalités ces derniers temps.

v
T T T ——— = Tyt

O. Schwander (Master MIND - Sorbonng 2025-2026 39/1

Objet de base en PyTorch : le Tenseur

Opérations élémentaires sur les tenseurs

produit scalaire (et contrairenent & numpy, que produit scalaire)
print(c.dot(c))

produit matriciel : utilisation de @ ou de la fonction mm
print(a.m(b), a @ b)

transposé

print(a.t(),a.T)

Création de tenseurs et caractéristiques

Créer un tenseur & partir d'une liste
print(torch.tensor([[1.,2.,3.],[2.,3,4.11))

Créer un tenseur tenseur rempli de 1 de taille 2x3x4
print(torch.ones(2,3,4))

tenseur de zéros de taille 2x3 de type float
print(torch. zeros(2,3, dtype=torch. float)) ## index du maximum selon une dimension

tirage uniforme entier entre 10 et 15, print "argnax : *,a.argna(din<1))

remarquez 1'utilisation du _ dans random pour 1'opération inplace g some selon une dinension/de tous les élénents
print(torch.zeros(2,3).random _(10,15)) print(b.sun(1), b.sun())

tirage suivant la loi normale
a=torch.zeros(2,3).normal_(1,0.1)
print(a)

equivalent a zeros(3,4).normal_
b = torch.randn(3,4)

Création d'un vecteur

¢ = torch.randn(3)

concatenation de tenseurs
print(torch.cat((a,a),1))

Taille des tenseurs/vecteurs
print(a.size(1),b.shape,c.size())
Conversion de type
print(a.int(),a.int().type())

noyenne selon une dinension/sur tous les éléments

print(b.mean(1), b.mean())

changer la taille du tenseur (la taille totale doit étre inchangée)
print(b.view(2,6))

somme/produit/puissance termes a termes

print(ata,a*a,a**2)

attention ! come sous numpy, il peut y avoir des pieges !

Vérifier toujours les dimensions !/

a=torch.zeros(5,1)

b = torch. zeros(5)

la preniére opération fait un broadcast et le résultat est tenseur 4 2 dimensiosn,
le résultat de la deuxieme opération est bien un vecteur
print(a-b,a.t()-b)

r MIND

Autograd et Graphe de calcul

veovaovy
samam = X

20— 2 dedd_,,
0d 9j ad dy
m

veontig o,
dd g 0s X0 T W <wW,x > +b 7 y— (< w,x > +b)
< W,X > s) 2 o
@ 57
de 8d 0) l
9e 9409 _ _9q
0e 0d 0 oo o —(y—()?
0e0dyg o e y— (< W, x> +b
ad 9y 0s Vv T X

————> Passe Forward

<«—— Passe Backward

Graphe de calcul
e Graphe orienté, décrit 'enchainement des opérations de calcul

e Chaque source est une variable d’entrée, un seul nceud de sortie : le
résultat du calcul

e En connaissant les dérivées de chaque opération, le graphe permet de
calculer les gradient de la sortie par rapport a chaque variable d’entrée.

2025-2026 41/1

Autograd en PyTorch : Régression linéaire

@ Nécessite d’avoir le flag requires_ grad fixé & True lorsque 'on souhaite calculer le
gradient par rapport a ce tenseur :

data_ x, data_y = ...
w = torch.randn(1,data_ x.size(1),requires_ grad=True)
b = torch.randn(1,1,requires_ grad=True)

@ On effectue le calcul

vhat = (x @ w.T)+b
loss_mse = ((yhat.view(-1,1)-data_y.view(-1,1))**2).sum()
loss__mse = loss__mse/data_ x.size(0)

@ Puis on exécute I’Autograd

loss__mse.backward()

@ On obtient les gradients de loss__mse par rapport & w et b

print(w.grad, b.grad)

MIND - Sorbonng 2025-2026

42/1

Les premiers pieges et quelques astuces

e Le graphe de calcul cofite trés cher ! (en mémoire, en temps)

» par défaut, un tenseur est créé sans le flag requires_grad

> si un backward est effectué = message d’erreur

> les gradients intermédiaires ne sont pas stockés ! (juste calculés et oubliés)
o Possibilité de désactiver temporairement ’autograd :

with torch.no grad():
graphe de calcul désactivé
W= ..
z=..

graphe de calcul activé

Y= ..

@ Une fois le backward exécuté, on ne peut plus le refaire (une seule passe) !

o L’opération est cumulative ! La variable grad n’est pas remise a zéro, tout
s’accumule (pourquoi ?)

@ A retenir : z.backward() = dérivée partielle de z par rapport a tout ce
qui a servi a la construire (et résultats dans la variable grad des variables
en question).

O. Schwander (Master MIND - Sorbonng 2025-2026 43 /1

