Construction de benchmarks robustes pour la détection de
similarité de code binaire

Encadrants : Nicolas Baskiotis, Benjamin Maudet ,ISIR, Sorbonne Université
(prenom.nom@sorbonne-universite.fr)

Mots-Clés : Binary Code Similarity Detection, Machine Learning, Large Language Models,
Apprentissage de représentation

Nombre d’étudiants : 2

Résumé : L’objectif du projet est de construire un benchmark diversifié et réaliste pour la
détection de similarité de code binaire en exploitant des implémentations multi-langages de
taches identiques, puis d’évaluer les approches état de I’art sur ce nouveau benchmark.

Sujet :

La détection de similarité de code binaire (Binary Code Similarity Detection - BCSD) est
un probleme fondamental en sécurité informatique et en analyse de logiciels. Il trouve de nom-
breuses applications pratiques telles que la détection de vulnérabilités, ’analyse de malwares, la
vérification de conformité de licences, ou encore la détection de plagiat de code. Ces dernieres
années, l'apprentissage automatique et en particulier les Large Language Models (LLMs) ont
montré des résultats prometteurs pour 'apprentissage de représentations de code binaire [T}, 2, [3].

Cependant, un probleme majeur limite ’avancée de ce domaine : I’absence de benchmarks
robustes, diversifiés et représentatifs des cas d’usage réels. Les benchmarks existants [I], 2] se
concentrent principalement sur la compilation d’un méme code source avec différents niveaux
d’optimisation ou sur des variations cross-architecture (x86, ARM, MIPS). Si ces scénarios sont
pertinents, ils restent éloignés de nombreux cas pratiques ou I’on cherche a détecter une similarité
sémantique entre programmes : deux implémentations différentes d’un méme algorithme, des
variantes d’'une méme fonctionnalité, ou des codes inspirés d’une méme source mais réécrits
dans des langages différents.

L’objectif de ce projet est double. Dans un premier temps, il s’agira de construire un bench-
mark novateur pour le BCSD en exploitant des plateformes comme Rosetta Code et CodinGamel.
Ces sites proposent de multiples implémentations dans différents langages de programmation
pour une méme tache algorithmique. En compilant ces implémentations en code binaire, on
obtient naturellement des paires de binaires sémantiquement similaires (ils résolvent le méme
probléme) mais syntaxiquement différents (implémentations distinctes, langages différents). Ce
benchmark permettra d’évaluer la capacité des modeles a capturer la similarité sémantique
plutot que de simples variations syntaxiques dues a la compilation.

Dans un second temps, le projet consistera a implémenter et évaluer les approches état
de l'art de la littérature sur ce nouveau benchmark. Plusieurs familles d’approches seront
considérées : les modeles basés sur les LLMs [1], les architectures de type Transformer adaptées
au code assembleur (k-trans) [4], les approches d’embedding comme Asm2Vec [5], ainsi que des
méthodes plus classiques basées sur 'extraction de features manuelles. L’analyse comparative
permettra d’identifier les forces et faiblesses de chaque approche face a ce nouveau type de


https://rosettacode.org/
https://www.codingame.com/start/fr/

benchmark plus proche des scénarios réels.

Le projet comprendra les étapes suivantes :
1. Collecte et curation des implémentations depuis Rosetta Code et CodinGame

2. Compilation des codes sources en binaires avec différentes configurations (compilateurs,
architectures)

Construction d’un dataset annoté avec labels de similarité sémantique

3.

4. Implémentation des baselines (features manuelles, graph-based methods)

5. Adaptation et évaluation des approches état de 'art (LLMs, k-trans, Asm2Vec)
6.

Analyse comparative des résultats et identification des limites des approches actuelles

Ce projet permettra aux étudiants de se familiariser avec les problématiques de représentation

de code binaire, d’apprentissage profond appliqué a la cybersécurité, et de construction rigou-
reuse de benchmarks pour I’évaluation de modeles de machine learning.

Références

1]
2]

Pei, K., Guan, J., Jungas, M., Grunwald, D., and Jana, S. (2023). Trex : Learning execution
semantics from micro-traces for binary similarity. arXiv preprint arXiv :2012.08680.

Li, X., Qu, Y., and Yin, H. (2021). PalmTree : Learning an Assembly Language Model for
Instruction Embedding. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’21).

Massarelli, L., Di Luna, G. A., Petroni, F., Baldoni, R., and Querzoni, L. (2019). Safe : Self-
attentive function embeddings for binary similarity. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment (pp. 309-329).

Xu, X., Liu, C., Feng, Q., Yin, H., Song, L., and Song, D. (2017). Neural Network-based
Graph Embedding for Cross-Platform Binary Code Similarity Detection. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security (pp.
363-376).

Ding, S. H., Fung, B. C., and Charland, P. (2019). Asm2vec : Boosting static representation
robustness for binary clone search against code obfuscation and compiler optimization. In
2019 IEEE Symposium on Security and Privacy (SP) (pp. 472-489).



