
Construction de benchmarks robustes pour la détection de

similarité de code binaire

Encadrants : Nicolas Baskiotis, Benjamin Maudet ,ISIR, Sorbonne Université
(prenom.nom@sorbonne-universite.fr)

Mots-Clés : Binary Code Similarity Detection, Machine Learning, Large Language Models,
Apprentissage de représentation

Nombre d’étudiants : 2

Résumé : L’objectif du projet est de construire un benchmark diversifié et réaliste pour la
détection de similarité de code binaire en exploitant des implémentations multi-langages de
tâches identiques, puis d’évaluer les approches état de l’art sur ce nouveau benchmark.

Sujet :
La détection de similarité de code binaire (Binary Code Similarity Detection - BCSD) est

un problème fondamental en sécurité informatique et en analyse de logiciels. Il trouve de nom-
breuses applications pratiques telles que la détection de vulnérabilités, l’analyse de malwares, la
vérification de conformité de licences, ou encore la détection de plagiat de code. Ces dernières
années, l’apprentissage automatique et en particulier les Large Language Models (LLMs) ont
montré des résultats prometteurs pour l’apprentissage de représentations de code binaire [1, 2, 3].

Cependant, un problème majeur limite l’avancée de ce domaine : l’absence de benchmarks
robustes, diversifiés et représentatifs des cas d’usage réels. Les benchmarks existants [1, 2] se
concentrent principalement sur la compilation d’un même code source avec différents niveaux
d’optimisation ou sur des variations cross-architecture (x86, ARM, MIPS). Si ces scénarios sont
pertinents, ils restent éloignés de nombreux cas pratiques où l’on cherche à détecter une similarité
sémantique entre programmes : deux implémentations différentes d’un même algorithme, des
variantes d’une même fonctionnalité, ou des codes inspirés d’une même source mais réécrits
dans des langages différents.

L’objectif de ce projet est double. Dans un premier temps, il s’agira de construire un bench-
mark novateur pour le BCSD en exploitant des plateformes comme Rosetta Code et CodinGame.
Ces sites proposent de multiples implémentations dans différents langages de programmation
pour une même tâche algorithmique. En compilant ces implémentations en code binaire, on
obtient naturellement des paires de binaires sémantiquement similaires (ils résolvent le même
problème) mais syntaxiquement différents (implémentations distinctes, langages différents). Ce
benchmark permettra d’évaluer la capacité des modèles à capturer la similarité sémantique
plutôt que de simples variations syntaxiques dues à la compilation.

Dans un second temps, le projet consistera à implémenter et évaluer les approches état
de l’art de la littérature sur ce nouveau benchmark. Plusieurs familles d’approches seront
considérées : les modèles basés sur les LLMs [1], les architectures de type Transformer adaptées
au code assembleur (k-trans) [4], les approches d’embedding comme Asm2Vec [5], ainsi que des
méthodes plus classiques basées sur l’extraction de features manuelles. L’analyse comparative
permettra d’identifier les forces et faiblesses de chaque approche face à ce nouveau type de

1

https://rosettacode.org/
https://www.codingame.com/start/fr/


benchmark plus proche des scénarios réels.
Le projet comprendra les étapes suivantes :

1. Collecte et curation des implémentations depuis Rosetta Code et CodinGame

2. Compilation des codes sources en binaires avec différentes configurations (compilateurs,
architectures)

3. Construction d’un dataset annoté avec labels de similarité sémantique

4. Implémentation des baselines (features manuelles, graph-based methods)

5. Adaptation et évaluation des approches état de l’art (LLMs, k-trans, Asm2Vec)

6. Analyse comparative des résultats et identification des limites des approches actuelles

Ce projet permettra aux étudiants de se familiariser avec les problématiques de représentation
de code binaire, d’apprentissage profond appliqué à la cybersécurité, et de construction rigou-
reuse de benchmarks pour l’évaluation de modèles de machine learning.

Références

[1] Pei, K., Guan, J., Jungas, M., Grunwald, D., and Jana, S. (2023). Trex : Learning execution
semantics from micro-traces for binary similarity. arXiv preprint arXiv :2012.08680.

[2] Li, X., Qu, Y., and Yin, H. (2021). PalmTree : Learning an Assembly Language Model for
Instruction Embedding. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’21).

[3] Massarelli, L., Di Luna, G. A., Petroni, F., Baldoni, R., and Querzoni, L. (2019). Safe : Self-
attentive function embeddings for binary similarity. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment (pp. 309-329).

[4] Xu, X., Liu, C., Feng, Q., Yin, H., Song, L., and Song, D. (2017). Neural Network-based
Graph Embedding for Cross-Platform Binary Code Similarity Detection. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security (pp.
363-376).

[5] Ding, S. H., Fung, B. C., and Charland, P. (2019). Asm2vec : Boosting static representation
robustness for binary clone search against code obfuscation and compiler optimization. In
2019 IEEE Symposium on Security and Privacy (SP) (pp. 472-489).

2


