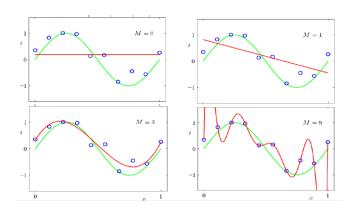
REsearch and methodology in Data Science Cours 2 – Protocole expérimental

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>

Master DAC Sorbonne Université

2023-2024

Objectif: généralisation



Sélection de modèle

On cherche des moyens de sélectionner le "meilleur" modèle parmi un ensemble de modèles possibles

Bruit et Régularités **Données** = **Bruit** + **Régularités**

- ▶ Bruit: Erreurs dans l'acquisition
- Régularités: Processus de génération sous jacent

Objectif: Modèle final = Capture du bruit + Modèle des régularités

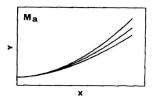
Meilleur modèle:

- Meilleur modèle des régularité
- Meilleure capture du bruit

Généraliser: éviter le sur-apprentissage

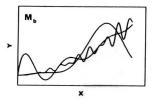
Complexité d'un modèle

Simple Model



- ▶ Nombre de paramètre
- Classe de fonction choisie

Complex Model



Critère d'information d'Akaike - 1973

$$AIC = -2\ln\hat{L} + 2k$$

- \hat{L} est la vraisemblance du modèle sur les données $=P(x|\theta^*,f)$
- k est le nombre de paramètres du modèle

Méthodologie

- ► Pas de découpage train/test
- Entraîner plusieurs modèles
- Calculer leur AIC
- Prendre le modèle avec le meilleur AIC (le plus faible)

Critère d'information d'Akaike - 1973

Divergence de Kullback-Leibler (KL)

- On suppose que les données sont générées par un processus p
- Soit des modèles f_i
- \blacktriangleright $KL(p||f_i)$ mesure l'information perdue en approchant p par f_i
- Le meilleur modèle est celui qui minimise cette divergence
- Problème: on ne connait pas p

Estimateur asymptotique

► l'AIC permet de comparer des modèles

Variante pour petits jeux de données:

$$AICc = AIC + \frac{2k(k+1)}{n-k-1}$$

Autres critères

- ► Critère d'information Bayésien 1978: $BIC = -2 \ln \hat{L} + k \ln n$
- Minumum Description Length 1978: learning as data compression

Principe général à retenir: rasoir d'Occam

- Pluralitas non est ponenda sine necessitate
- Les multiples ne doivent pas être utilisés sans nécessité
- ➤ Sélectionner le modèle le plus simple qui modélise les données suffisamment bien

Sélection de modèles par échantillonage

Deux grandes familles de méthodes pour se faire une idée de l'erreur de généralisation..

► La loi des grands nombres: l'utilisation de bornes statistiques permettant de borner la différence entre l'erreur empirique et l'erreur théorique (sous certaines hypothèses)

$$\forall f \in \mathcal{F}, \quad \mathcal{R}_{P}(f) \leqslant \widehat{\mathcal{R}}_{n}(f) + \frac{1}{\sqrt{2n}} \sqrt{\ln(2) \underbrace{|f|_{\pi}}_{\text{complexite}} + \ln \frac{1}{\delta}}.$$

L'utilisation d'échantillons différents pour l'évaluation de l'erreur

Découpage train/test

Deux sous-ensembles

Base d'apprentissage

- Utilisé pour l'entraînement
- Sous-apprentissage: mauvaise performances en train
- ▶ Besoin d'une performance correcte

Base de test

- Distinct du train
- ► Quelle taille ?
- ► Choix des exemples ?
- Ojectif: bien ce comporter sur ce dataset

Sélection de modèles par échantillonage

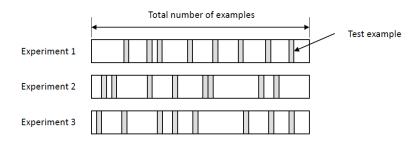
Problèmes

- Pas assez de données qui restent en train ?
- ► Sous-ensemble facile ? difficile ?
- Sensibilité aux données d'apprentissage

Plusieurs solutions

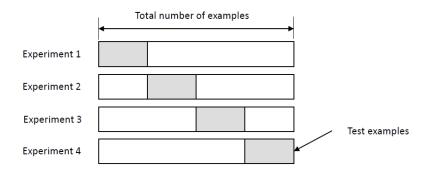
- Rééchantillonage aléatoire
- Cross-validation

Rééchantillonage aléatoire



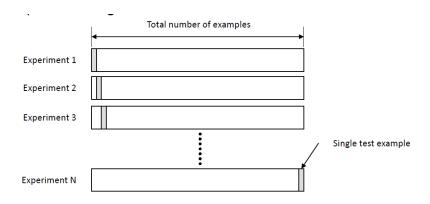
- Erreur du modèle: moyenne sur les différentes expériences
- Estimation significativement meilleure (avec assez de tirages)

Cross-Validation



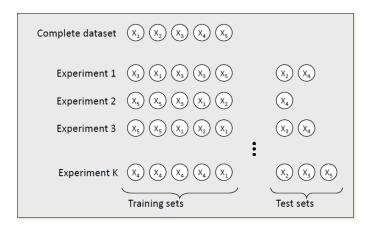
- Erreur du modèle: moyenne sur les différentes expériences
- Tous les exemples sont utilisés au moins une fois en train

Leave-one-out



- ► Erreur du modèle: moyenne sur les différentes expériences
- Cas dégénéré de CV: plus robuste, meilleurs pour les petits jeux de données

Bootstrap



- Plus grande variance dans les différents "folds"
- ► Mais effet désirable car plus réaliste

Ensemble de validation

En même temps

- Trouver le meilleur modèle
- Estimer la performance en généralisation

3 sous-ensembles:

- ► Train
- Validation pour la séléction
- ► Test pour l'évaluation

Courbes d'apprentissage

(dessin au tableau)

Protocole expérimental

Ensemble des choix faits précédemment

- Dataset
- Découpage train/val/test, avec cross-val ou non, etc
- Méthode de mesure du score

Comparer des modèles

- ► Même protocole expérimental
- Doit rester identique au cours du projet
- Doit être documenté précisément pour le futur

Documentation

En lisant un rapport, ou un article, on doit pouvoir mettre en œuvre le même protocole expérimental, pour pouvoir se comparer aux scores présentés.