
Containers
Docker en pratique

MLOps

MEthodology in Data Science
Docker pour le Machine Learning et MLOps

Olivier Schwander
<olivier.schwander@sorbonne-universite.fr>

Master MIND
Sorbonne Université

2025-2026

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>MEthodology in Data Science

Containers
Docker en pratique

MLOps

Motivation
MLops
Container

Motivation

Développement
I Python 3.11 avec librairies spécifiques
I Conda/Poetry/uv pour les dépendances
I Une machine ubuntu/windows/mac
I Tout fonctionne en local

Production
I Serveur Debian avec Python 3.8
I Conflits de versions potentiels
I (Pensez à tous les soucis à PPTI)

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>MEthodology in Data Science

Containers
Docker en pratique

MLOps

Motivation
MLops
Container

Reproductiblité

Avantages
I Même environnement partout (dev, test, prod)
I Contrôler les versions des dépendances
I Déploiement fiable et rapide

Pour l’IA
I Reproductibilité des expériences
I Partage de modèles, des architectures, des poids
I Intérêt scientifique aussi: recherche reproductible

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>MEthodology in Data Science

Containers
Docker en pratique

MLOps

Motivation
MLops
Container

Dépendances et déploiements

Chaîne de dépendances
I CUDA, cuDNN pour le GPU
I pyTorch/TensorFlow et autres
I Autres bibliothèques (FFmpeg, OpenCV)

Scalabilité horizontale
I en train: même environnement pour tous les nœuds de train
I en inférence: besoin d’ajouter des nœuds facilement en cas de

pic de demande

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>MEthodology in Data Science

Containers
Docker en pratique

MLOps

Motivation
MLops
Container

Devops et MLops

Devops (entre autre)
I Le déploiement, c’est du code comme tout le reste
I Images préconstruites avec tout déjà installé, juste à recopier
I Description de l’état attendu du système (ansible)

MLops
I Pareil pour les modèles et les poids
I Facilite la mise en production des modèles entraînés
I Numéros de version, tag, hub pour télécharger

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>MEthodology in Data Science

Containers
Docker en pratique

MLOps

Motivation
MLops
Container

Machines virtuelles

I OS complet invité: Linux, Windows (plus de possibilités)
I Hyperviseur (VirtualBox, VMware)
I Lourd, lent au démarrage
I Isolation forte (plus de sécurité) mais coût élevé
I Image: système complet (distribution installée de façon

classique, paquets installés, etc)

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>MEthodology in Data Science

Containers
Docker en pratique

MLOps

Motivation
MLops
Container

Containers

I Partage du kernel hôte (linux-only)
I Léger, démarrage en quelques secondes
I Isolation des processus, des utilisateurs, des systèmes de fichier
I Image: distribution légère, + application + dépendances

En pratique
I Docker
I (mais il y a des alternatives)

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>MEthodology in Data Science

Containers
Docker en pratique

MLOps

Motivation
MLops
Container

Image docker

I Base immutable (système de base, outils linux de base)
I Ajouts de couches
I Dockerfile: règles pour décrire une nouvelle couche

(installation de votre application)
I Distribué dans un registre

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>MEthodology in Data Science

Containers
Docker en pratique

MLOps

Motivation
MLops
Container

Un container qui tourne

I Instance d’une image (un même container peut tourner
plusieurs fois, avec des données différentes)

I Processus au sens kernel, mais isolé du système hôtes (et entre
eux)

I Éphémère par défaut: jetable (pas d’administration système
classique, on fait évolue le Dockerfile)

I Données persistantes possibles (datasets, poids, etc)

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>MEthodology in Data Science

Containers
Docker en pratique

MLOps

Motivation
MLops
Container

Quelques commande: démo

docker pull python:3.11-slim

docker run -p 8080:80 -ti python:3.11-slim

docker ps -a

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>MEthodology in Data Science

Containers
Docker en pratique

MLOps

Déploiement en production
Fichers de configuration
Scaling horizontal

Architecture typique

Composants
I Votre application: API REST de prédiction
I Base de données (PostgreSQL, MongoDB)
I File d’attente (Redis, RabbitMQ)
I Serveur de modèles (Ollama, vLLM)

Votre application
I Juste l’API
I Le reste c’est des services autour
I Besoin d’orchestration pour gérer ça

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>MEthodology in Data Science

Containers
Docker en pratique

MLOps

Déploiement en production
Fichers de configuration
Scaling horizontal

Structure du projet

my-ml-app/
- app/

- __init__.py
- main.py
- model.py

- pyproject.toml
- uv.lock
- Dockerfile

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>MEthodology in Data Science

Containers
Docker en pratique

MLOps

Déploiement en production
Fichers de configuration
Scaling horizontal

pyproject.toml

[project]
name = "my-ml-app"
version = "0.1.0"
requires-python = ">=3.11"
dependencies = [

"fastapi>=0.109.0",
"uvicorn>=0.27.0",
"pydantic>=2.5.0",
"numpy>=1.26.0",

]

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>MEthodology in Data Science

Containers
Docker en pratique

MLOps

Déploiement en production
Fichers de configuration
Scaling horizontal

Dockerfile

FROM ghcr.io/astral-sh/uv:python3.11-bookworm-slim

WORKDIR /app
COPY . . # Copie du code source

RUN uv sync --frozen

ENV PATH="/app/.venv/bin:$PATH"

CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "8000"]

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>MEthodology in Data Science

Containers
Docker en pratique

MLOps

Déploiement en production
Fichers de configuration
Scaling horizontal

Dockerfile multi-stage

FROM ghcr.io/astral-sh/uv:python3.11-bookworm-slim AS builder

[...] Instructions de build

Stage 2: Runtime
FROM python:3.11-slim-bookworm

WORKDIR /app
COPY --from=builder /app/.venv /app/.venv
COPY --from=builder /app/app /app/app

[...] Instructions de run

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>MEthodology in Data Science

Containers
Docker en pratique

MLOps

Déploiement en production
Fichers de configuration
Scaling horizontal

Pourquoi multi-stage ?

Taille
I Image finale légère
I Pas les outils de build

Sécurité
I Surface d’attaque plus faible
I Seulement le nécessaire pour l’exécution
I Meilleure sécurité

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>MEthodology in Data Science

Containers
Docker en pratique

MLOps

Déploiement en production
Fichers de configuration
Scaling horizontal

Composants

I App API (votre application)
I Base de données (PostgreSQL)
I Serveur LLM (Ollama)

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>MEthodology in Data Science

Containers
Docker en pratique

MLOps

Déploiement en production
Fichers de configuration
Scaling horizontal

docker-compose.yml

services:
api:
[...] Container poru votre application

db:
[...] Base données SQL

ollama:
#[...] Serveur d'inférence

volumes:
postgres_data:
ollama_data:

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>MEthodology in Data Science

Containers
Docker en pratique

MLOps

Déploiement en production
Fichers de configuration
Scaling horizontal

docker-compose.yml

api:
build: . # Votre applicaiton si elle n'est pas sur le hub
ports:

- "8000:8000"
depends_on:

- db
- ollama

environment:
- DATABASE_URL=postgresql://user:pass@db:5432/mydb
- OLLAMA_URL=http://ollama:11434

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>MEthodology in Data Science

Containers
Docker en pratique

MLOps

Déploiement en production
Fichers de configuration
Scaling horizontal

docker-compose.yml

db:
image: postgres:15-alpine
environment:

- POSTGRES_USER=user
- POSTGRES_PASSWORD=pass
- POSTGRES_DB=mydb

volumes:
- postgres_data:/var/lib/postgresql/data

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>MEthodology in Data Science

Containers
Docker en pratique

MLOps

Déploiement en production
Fichers de configuration
Scaling horizontal

docker-compose.yml

ollama:
image: ollama/ollama:latest
ports:

- "11434:11434"
volumes:

- ollama_data:/root/.ollama
command: ["ollama", "serve"]

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>MEthodology in Data Science

Containers
Docker en pratique

MLOps

Déploiement en production
Fichers de configuration
Scaling horizontal

Commandes Docker Compose: démo

docker compose up -d

docker compose logs -f

docker compose down

docker compose up -d --force-recreate

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>MEthodology in Data Science

Containers
Docker en pratique

MLOps

Déploiement en production
Fichers de configuration
Scaling horizontal

Différents outils
Docker tout seul
I Application simple: un seul processus

Docker Compose
I Déploiement complee: application qui utilise plusieurs services
I Un seul hôte

Docker Swarm
I Multi-hôtes: plusieurs nœuds pour mieux passer à l’échelle
I Load balancing intégré
I Haute disponiblité

Kubernetes
I Orchestration avancée
I Auto-scaling

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>MEthodology in Data Science

Containers
Docker en pratique

MLOps

MLOps methodoloy
Engineering techniques
I SysOps: infrastructre as code
I DevOps: software development as code
I MLOps: ML as code

Keypoints
I Data pipelines: building, validation, deployment
I Model training pipelines: reproducible experiments,

hyperparameter tuning
I Model versioning: tracking models, datasets, and code

together
I Model deployment: putting models in production
I Model monitoring: performance drift, data drift, bias detection,

odd cases
I Automated retraining: scheduled or drift-triggered

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>MEthodology in Data Science

Containers
Docker en pratique

MLOps

MLflow
Features
I Record hyperparameters and model
I Plot learning curves and other figures
I Model register to distribute models
I Version number, tags
I Dashboard to monitor training and usage of models

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>MEthodology in Data Science

Containers
Docker en pratique

MLOps

MLflow integration

with mlflow.start_run():
params = {

"epochs": epochs,
"learning_rate": 1e-3,
"batch_size": 64,
"optimizer": "SGD",

}
mlflow.log_params(params)
model = ... # Training here
mlflow.pytorch.log_model(model, "model")

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>MEthodology in Data Science

Containers
Docker en pratique

MLOps

Conclusion
Besoin de reproductibilté
I Science: validtié des publications
I Développement/prototypage/train: relancer facilement des

tâches
I Production/inférence: déploiement facile des modèles

Docker
I Image qui contient tout le nécessaire
I Référence pour le déploimeent de toutes les applications web

de nos jours
I Utile aussi en ML

MLops
I Méthologie pour gérer les modèles entraînés
I Tout simplement: savoir ce qu’on utilise en production

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>MEthodology in Data Science

	Containers
	Motivation
	MLops
	Container

	Docker en pratique
	Déploiement en production
	Fichers de configuration
	Scaling horizontal

	MLOps

